


### Adjuvanted vaccines for the elderly

Aging and Immunity III January 11-13 2016 Arnaud Didierlaurent, PhD

GSK Vaccines, Rixensart, Belgium

# Role of Innate and adaptive immune response in adjuvant response



Garçon N, *et al.* Understanding Modern Vaccines, *Perspectives in Vaccinology*, Vol 1, Amsterdam: Elsevier; 2011; chapter 4: p89-113

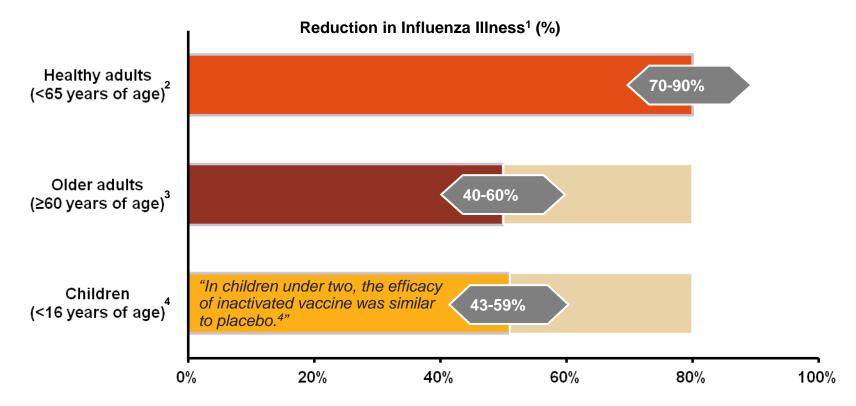
# Only few vaccine adjuvants have been evaluated in the Elderly

| Adjuvant name                                                                 | Mechanism or receptor                      | - Clinical phase or licensed product nam          |
|-------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|
| dsRNA analogues<br>(for example, poly(I:C))                                   | TLR3                                       | Phase 1                                           |
| Lipid A analogues<br>(for example, MPL, RC529, GLA, E6020)                    | TLR4                                       | Cervarix, Supervax, Pollinex Quattro,<br>Melacine |
| Flagellin                                                                     | TLR5                                       | Phase 1                                           |
| Imidazoquinolines<br>(for example, Imiquimod, R848)                           | TLR7 and TLR8                              | Aldara                                            |
| CpG ODN                                                                       | TLR9                                       | Phase 3                                           |
| Saponins<br>(for example, QS21)                                               | Unknown                                    | Phase 3                                           |
| C-type lectin ligands<br>(for example, TDB )                                  | Mincle, Nalp3                              | Phase 1                                           |
| CD1d ligands<br>(for example, α- galactosylceramide)                          | CD1d                                       | Phase 1                                           |
| Aluminum salts<br>(for example, aluminum oxyhydroxide,<br>aluminum phosphate) | Nalp3, ITAM, Ag delivery                   | Numerous licensed products                        |
| Emulsions<br>(for example, MF59, AS03, AF03, SE)                              | Immune cell recruitment, ASC,<br>Ag uptake | Fluad, Pandemrix                                  |
| Virosomes                                                                     | Ag delivery                                | Epaxal, Inflexal V                                |
| AS01 (MPL,QS21, liposomes)                                                    | TLR4                                       | Phase 3                                           |
| ASO2 (MPL,QS21, emulsion)                                                     | TLR4                                       | Phase 3                                           |
| ASO4 (MPL, aluminum salt)                                                     | TLR4                                       | Cervarix                                          |
| AS15 (MPL, QS21, CpG, liposomes)                                              | TLR4 and TLR9                              | Phase 3                                           |
| GLA-SE (GLA, emulsion)                                                        | TLR4                                       | Phase 1                                           |
| IC31 (CpG, cationic peptide)                                                  | TLR9                                       | Phase 1                                           |
| CAF01 (TDB, cationic liposomes)                                               | Mincle, Ag delivery                        | Phase 1                                           |
| ISCOMs (saponin, phospholipid)                                                | Unknown                                    | Phase 2                                           |

Adapted from Reed SG et al, Nature Med 19: 1597-1608, 2014

### Can Adjuvant help? Observed benefits of adjuvants in candidate or licensed vaccines

- Increased and persistent CD4 and antibody response<sup>1</sup>
- Antigen dose sparing effect<sup>2</sup>
- Increase breadth of the antibody response (MF59/AS03-adjuvanted flu)<sup>3</sup>
- Evidence of cross-reactive T-cell response<sup>5</sup>
- AS are being used in vaccines in populations with specific immune status, such as HIV+<sup>7</sup>and other immunocompromised people<sup>6</sup>


#### WHAT ISTHE EVIDENCE IN THE ELDERLY POPULATION?

#### References:

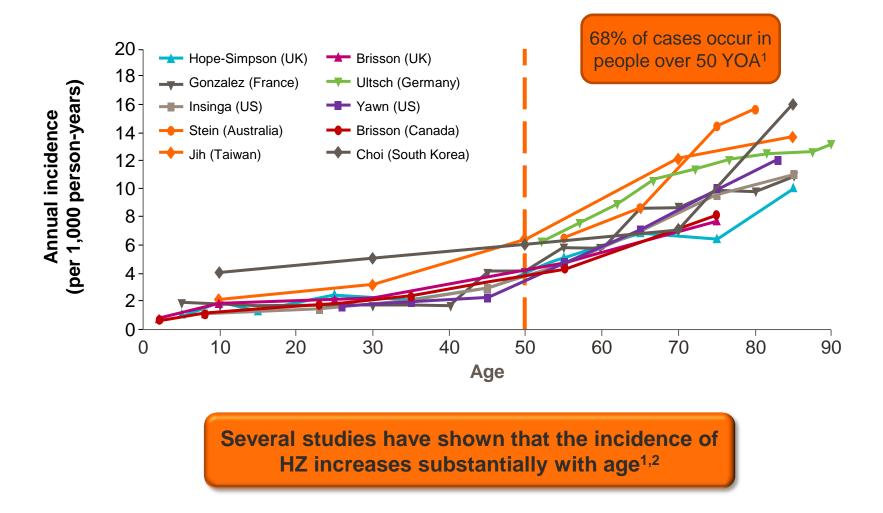
- <sup>1</sup> Leroux-Roels et al. Vaccine, 2015 (HBs/AS01); Leroux-Roels et al., Clin. Vaccine Immunol. 2014 (F4/AS01); Roteli-Martins et al., Hum Vaccin Immunother 2012 (HPV/AS04)
- <sup>2</sup> Baras et al. PLoS One 2008; Leroux-Roels et al. Lancet 2007 ; Nolan et al, J Infect Dis 2015
- <sup>3</sup> Khurana et al. Sci Transl Med. 2011 (MF59); unpublished (AS03)
- <sup>4</sup> Nolan et al, J Infect Dis 2014
- <sup>5</sup> Moris et al. J. Clin. Immunol. 2011 (H5N1/AS03); Wheeler et al, Lancet Oncol 2012 (HPV/AS04-Cervarix);
- Einstein et al, Hum Vaccines 2011
- <sup>6</sup> Stadtmauer et al. *Blood* 2014 (Zoster gE/AS01); Tong et al. *Kidney Int* 2005 (HBs/AS04-Fendrix); Siegrist et al, *Plos One* 2012 (H1N1/AS03)
- 7 Denny L, et al. Vaccine 2013 (HPV/AS04Cervarix); Ho J et al. AIDS 2011 (H1N1/AS03); Harrer et al. Vaccine 2014 (F4/AS01); Berkowitz, et al. J. Inf. Dis. 2014. (VZV gE/AS01)

### **Observation 1: limited efficacy of conventional non-adjuvanted Influenza vaccines in older adults**

Estimated reduction in Influenza Illness<sup>1</sup> Following Administration of Non-adjuvanted TIVs to Healthy Adults (<65 Years), Older Adults (≥60 Years) and Children (<16 Years)



Data shown are taken from different studies and definition of influenza illness endpoints can vary by study


<sup>&</sup>lt;sup>1</sup>. Please refer to source references for more details;

<sup>&</sup>lt;sup>2</sup> CDC available at <u>http://www.cdc.gov/flu/professionals/vaccination/effectivenessga.htm;</u>

<sup>&</sup>lt;sup>3</sup> McElhaney JE. Aging health. 2008; 4:603-613

<sup>&</sup>lt;sup>4</sup> Jefferson T, et al. Cochrane Database of Systematic Reviews 2008. Issue 2. Art. No.: CD004879

# **Observation 2: Herpes zoster incidence rate increases with age (regardless of geography)**



HZ, herpes zoster; YOA, years of age

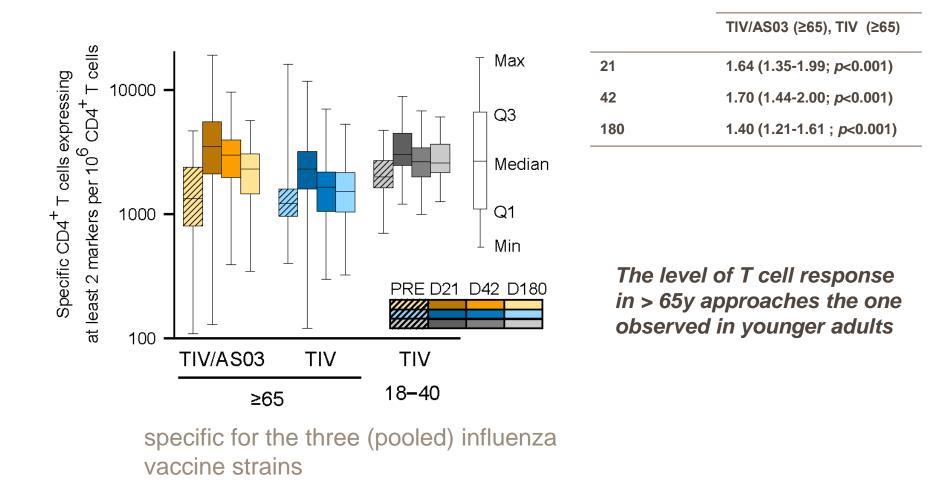
1. Yawn and Gilden. *Neurology* 2013; 81: 928930; 2. Harpaz et al. MMWR Recomm Rep 2008; 57: 1–30

#### Impact on efficacy- Adjuvanted vs plain seasonal split flu

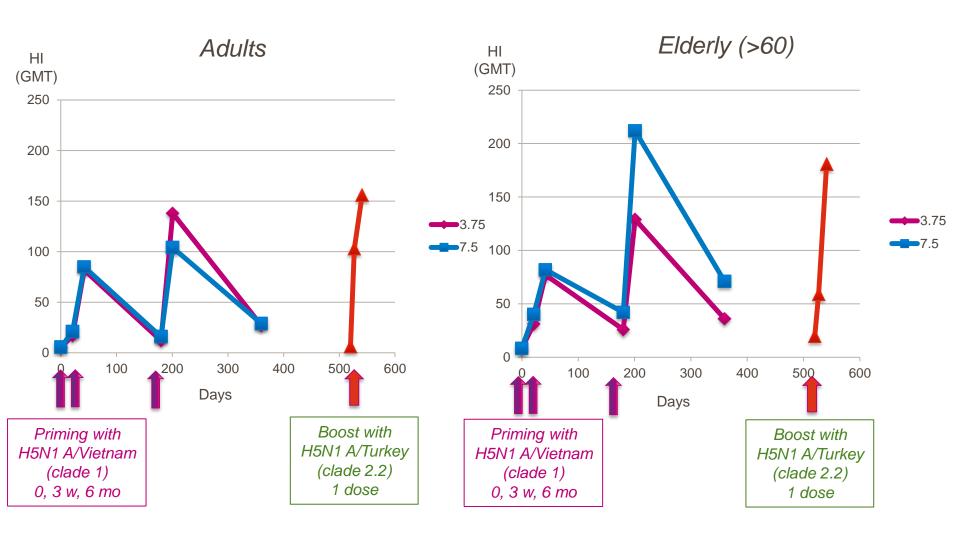
|                           | Participants infected                                                                              |                              | Relative efficacy          | N= 43,800     |
|---------------------------|----------------------------------------------------------------------------------------------------|------------------------------|----------------------------|---------------|
|                           | AS03-adjuvanted TIV (n=21573)                                                                      | Non-adjuvanted TIV (n=21482) |                            | aged 65 years |
| Primary endpoint*         |                                                                                                    |                              |                            |               |
| Influenza A or B, or both | 274 (1·27%, 1·12 to 1·43)                                                                          | 310 (1·44%, 1·29 to 1·61)    | 12·11% (-3·40 to 25·29)    | and older     |
| Exploratory analysis*†    |                                                                                                    |                              |                            |               |
| Influenza A               | 224 (1·04%, 0·91 to 1·18)                                                                          | 270 (1·26%, 1·11 to 1·41)    | 17.53% (1.55 to 30.92)     |               |
| Influenza A H3N2          | 170 (0.79%, 0.67 to 0.92)                                                                          | 205 (0.95%, 0.83 to 1.09)    | 17·54% (-1·05 to 32·71)    |               |
| Influenza A H1N1          | 17 (0.08%, 0.05 to 0.13)                                                                           | 12 (0.06%, 0.03 to 0.10)     | -41.61% (-196.50 to 32.37) |               |
| Post-hoc analyses‡        |                                                                                                    |                              |                            |               |
| Influenza A H3N2          | 190 (0.88%, 0.76 to 1.01)                                                                          | 242 (1·31%, 0·99 to 1·28)    | 22.0% (5.68 to 35.49)      |               |
| Influenza BYamagata       | 12 (0·06%, 0·03 to 0·10)                                                                           | 11 (0.05%, 0.03 to 0.09)     | -8/1% (-146·36 to 52·03)   |               |
| Influenza B Victoria      | 37 (0·17%, 0·12 to 0·24)                                                                           | 29 (0·13%, 0·09 to 0·19)     | -27·16% (-106·75 to 21·80) |               |
| ···· / ···                | CI). Excluding A H1N1 pdm09 strains. TIV=inactiv<br>iven AS03-adjuvanted TIV and 53 samples in tha |                              | 21                         |               |

Number of participants infected and relative efficacy by influenza strain during the year 1 surveillance period in the year 1 efficacy cohort

| Similar data with MF59-TIV   |  |  |  |
|------------------------------|--|--|--|
| with a reduced               |  |  |  |
| "pneumonia/influenza"        |  |  |  |
| hospitalizations by 23% over |  |  |  |
| TIV*                         |  |  |  |

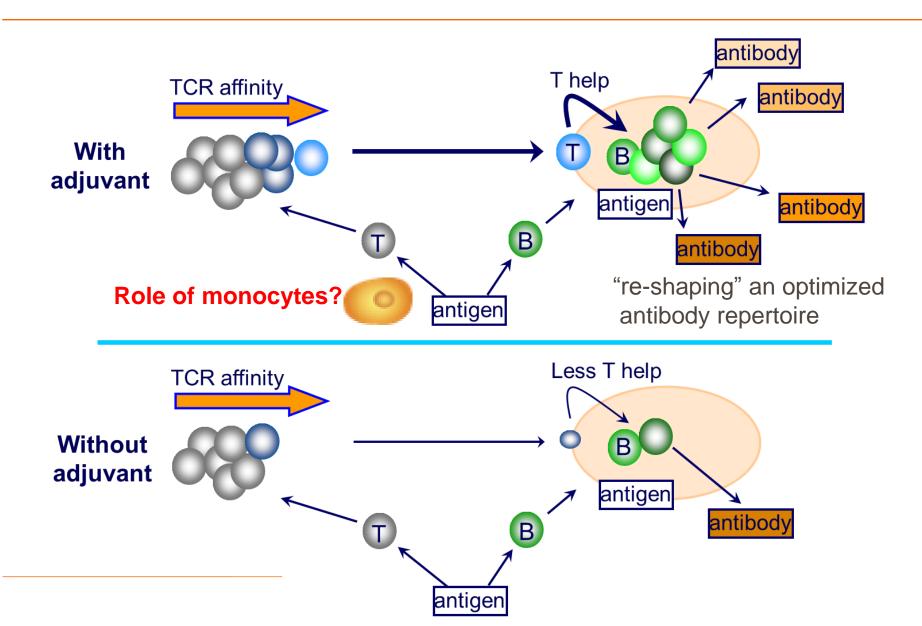

Clinical outcomes during peak season in year 1 in the year 1 peak season efficacy cohort

|                                                             | AS03-adjuvanted TIV<br>(n=21394) | Non-adjuvanted TIV<br>(n=21 337) | Relative efficacy*      |
|-------------------------------------------------------------|----------------------------------|----------------------------------|-------------------------|
| Pneumonia or clinical<br>influenza                          | 202 (0·94%, 0·82 to 1·08)        | 225 (1·05%, 0·92 to 1·20)        | 10·70% (-7·99 to 26·15) |
| All-cause death                                             | 63 (0·29%, 0·23 to 0·38)         | 88 (0.41%, 0.33 to 0.51)         | 28.59% (1.32 to 48.33)  |
| Admission to hospital<br>because of respiratory<br>diseases | 84 (0·39%, 0·31 to 0·49)         | 89 (0·42%, 0·34 to 0·51)         | 5·95% (-26·72 to 30·20) |
| Pneumonia only†                                             | 32 (0·15%, 0·10 to 0·21)         | 56 (0·26%, 0·20 to 0·34)         | 43.08% (12.13 to 63.14) |
|                                                             |                                  | 1                                |                         |

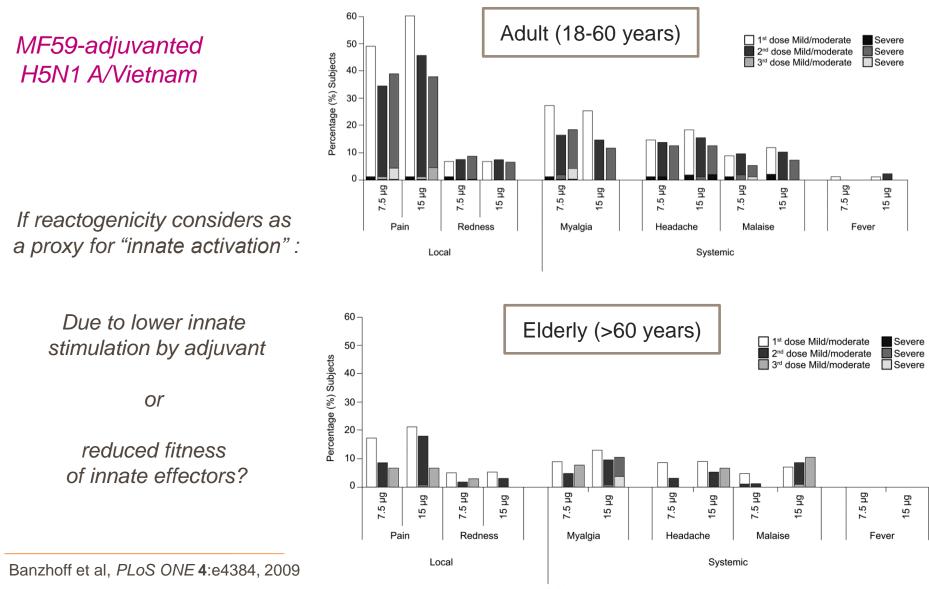

Data are n (%, 95% CI) or % (95% CI). TIV=inactivated trivalent influenza vaccine. \*Descriptive estimates. †Post-hoc analysis with adjust ment for regional differences in attack rates in the group given non-adjuvanted TIV.

McElhaney J et al., *Lancet Infect Dis* 2013;13:485-96 \*Mannino et al, *Am J Epidemiol* 2012; 176:527-33

## Adjuvant (AS03) enhanced T cell response against seasonal split flu in individuals >65 YOA




### Priming in the Elderly with MF59-adjuvanted <u>H5N1</u> vaccine and boostability with heterovariant strain

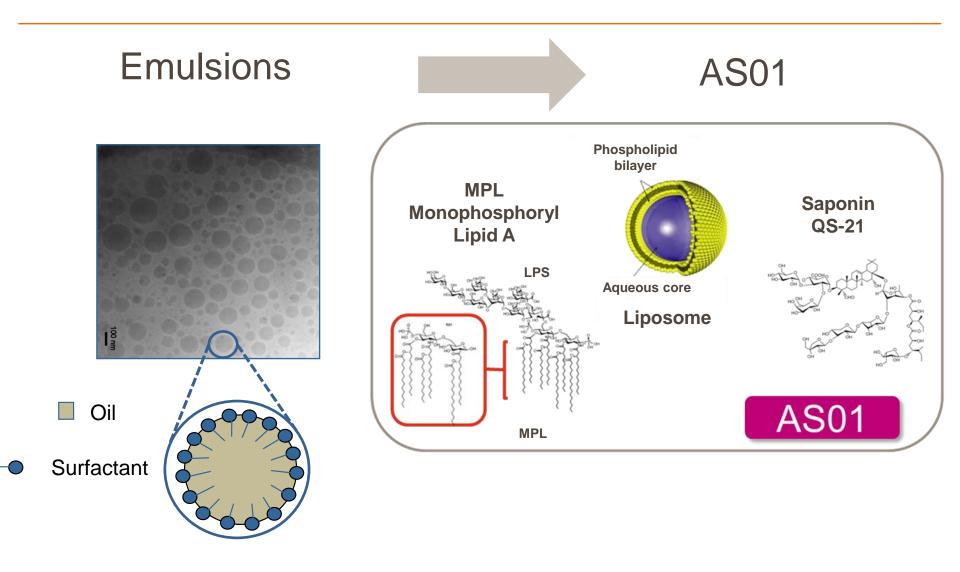



Data from Banzhoff et al, PLoS ONE 2009, and Fragapane et al, Clin Vaccine Immunol 2010

### Potential role of T cell induced by the adjuvanted vaccine in B cell "adaptibility"



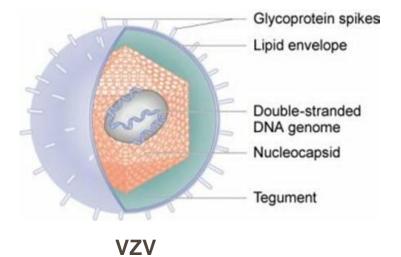
# Reactogenicity induced by adjuvanted Flu vaccine is generally of lower intensity in the Elderly than in younger adults




Solicited adverse event

- Accumulating evidence that adjuvants mainly o/w emulsions can increase immunogenicity and efficacy of influenza vaccines in the elderly, across strains
- Efficiency tends to be higher for pandemic vs seasonal strains-> highest benefit is when there is a limited established repertoire?
- A potential mechanism involving T<sub>FH</sub> may overcome this limitation by providing adaptability features to the established repertoire-> Increased breadth of antibody response ? Role of other T cells?

Activation of innate immunity by adjuvant may be reduced in the elderly (to be confirmed) but nevertheless sufficient to promote T/B-cell activation


#### From one adjuvant to another....



### **GSK's candidate Zoster vaccine antigen**

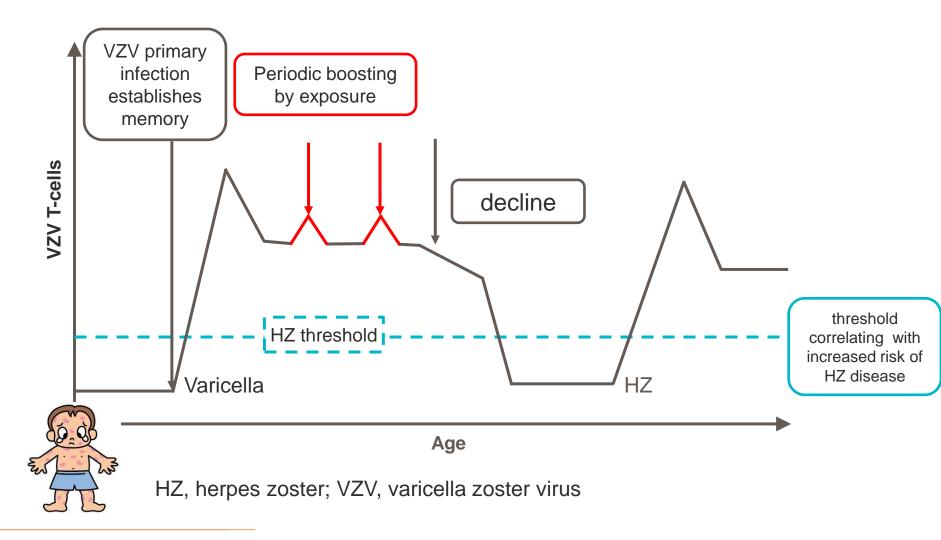
#### VZV glycoprotein E (gE)

- Highly abundant VZV glycoprotein
- Central role in VZV infection Essential for virus entry and cell–cell spread
- Expressed in skin lesions and ganglia during HZ episodes
- Target of both humoral and cellular responses



### **Results of the HZ/su Ph III efficacy studies**

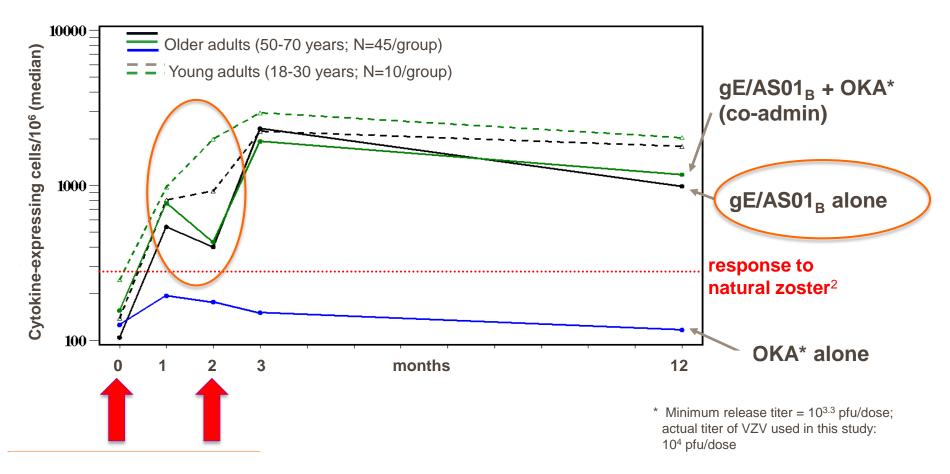
| <b>Age range</b><br>(years) | HZ/su group |                                    | Placebo group |                                    | <b>VE</b> (95% CI)*     |
|-----------------------------|-------------|------------------------------------|---------------|------------------------------------|-------------------------|
|                             | HZ cases    | Incidence<br>(per 1000 person-yrs) | HZ cases      | Incidence<br>(per 1000 person-yrs) |                         |
| Overall (≥50)               | 6           | 0.3                                | 210           | 9.1                                | <b>97.2</b> (93.7-99.0) |
| 50-59                       | 3           | 0.3                                | 87            | 7.8                                | <b>96.6</b> (89.6-99.3) |
| 60-69                       | 2           | 0.3                                | 75            | 10.8                               | <b>97.4</b> (90.1-99.7) |
| ≥70                         | 1           | 0.2                                | 48            | 9.4                                | <b>97.9</b> (87.9-100)  |


\*VE = % vaccine efficacy (Poisson method); CI, confidence interval; p-value = Two sided exact p-value conditional to number of cases, p-value for all comparisons <0.0001

➢ HZ/su efficacy appeared to be age-independent (even in people ≥70 years) and did not wane during the study period

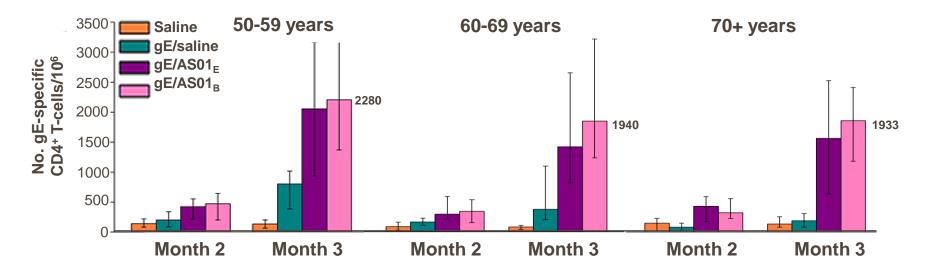
No imbalance in the incidence of safety endpoints observed between the HZ/su and placebo groups. Local and systemic reactions to HZ/su are common, large majority being mild-moderate and of short duration.

Lal H et al. N Engl J Med 2015;372:2087-2096.


#### HZ risk correlates with a decline in VZV-specific T-cell levels



Kimberlin and Whitley. N Engl J Med 2007; 356: 1338-43

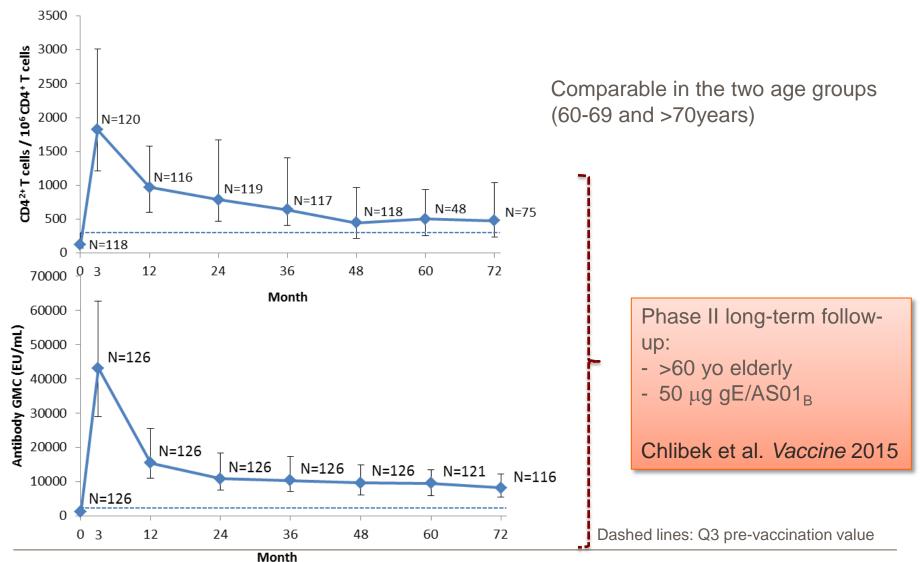

## The ability of AS01 to improve cellular response in the elderly as the basis for its selection for the zoster program

- Immuno PoC study<sup>1</sup>. Open-label, randomized; N=155
- gE/AS01<sub>B</sub> and/or VZV live attenuated (OKA) vaccine\* administered separately or concomitantly
- 2 doses, Months 0, 2



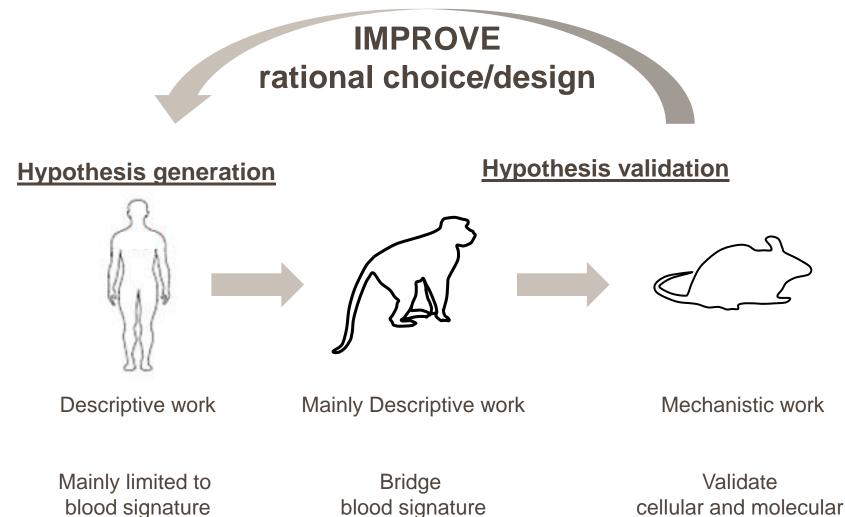
#### Adjuvant dose selection study

#### Median gE-specific CD4+ T-cell responses by age



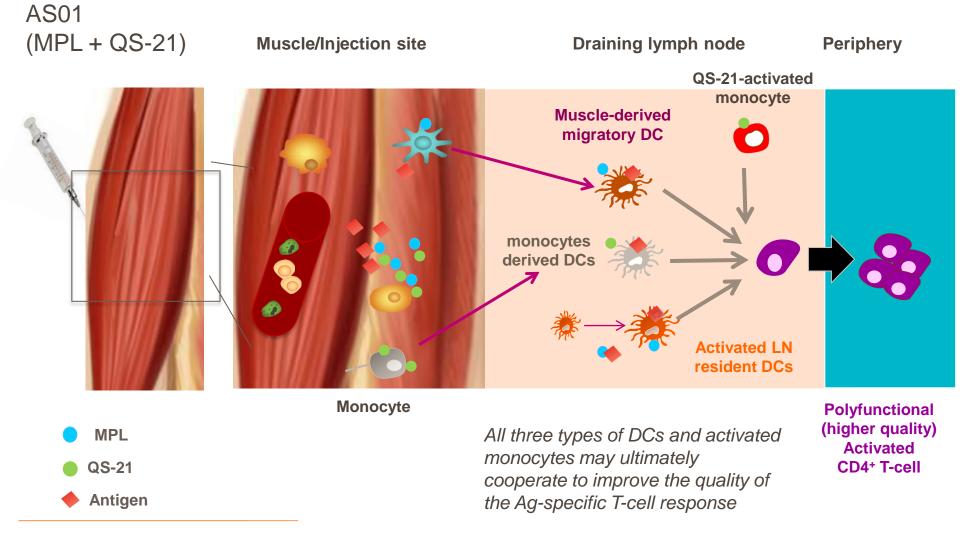

Overall ages: AS01<sub>B</sub> induced higher CD4+ T cells than AS01E\* (also true for antibody levels) AS01B contains 50µg of MPL and QS-21 AS01E contains 25µg of MPL and QS-21

\*True for separate age strata although statistically significant only for the 60-69y.

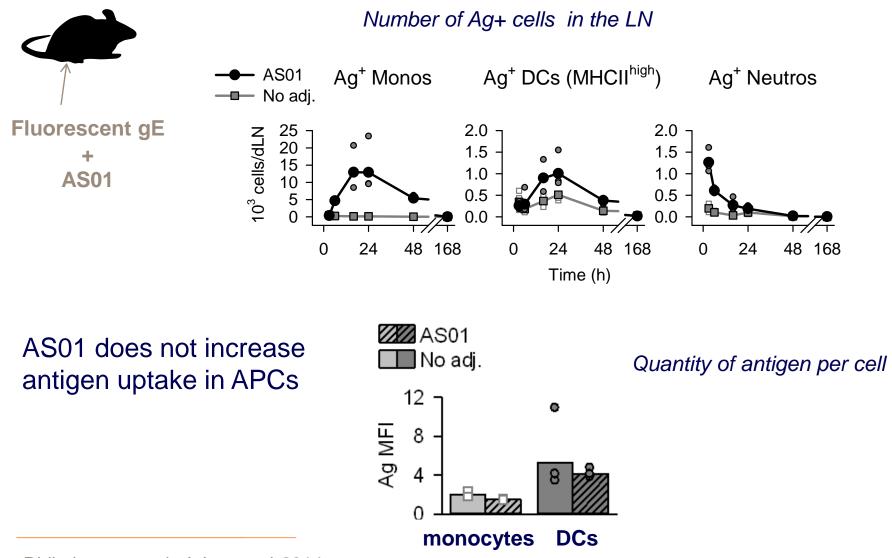

Chlibek et al. J Infect Dis 2013; 208:1953-61

### Long-term persistence (6 years) of gE-specific T cells and antibodies



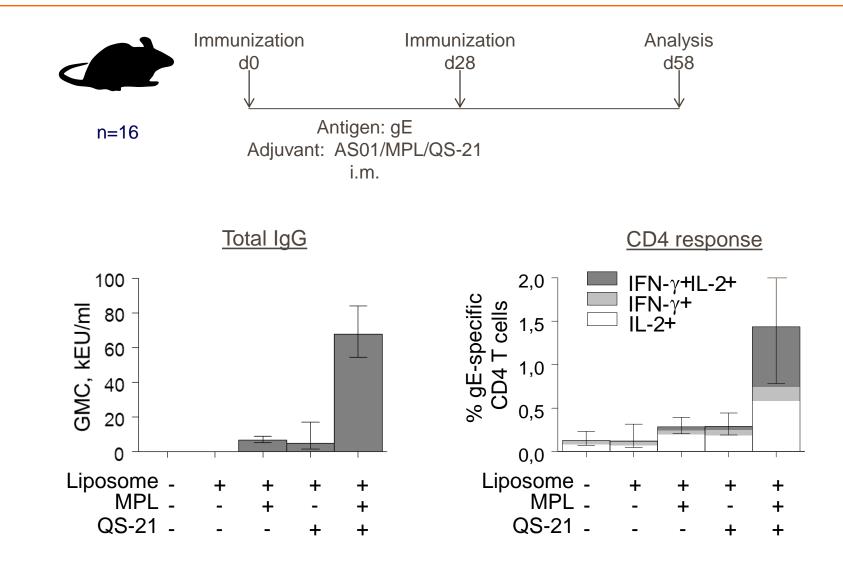

Chlibek et al. Vaccine 2015

### Understanding the mode of action of AS01 The right model for the right question!




mechanisms

## MPL acts on DCs and QS-21 acts on monocytes, broadening the APC population in the LN



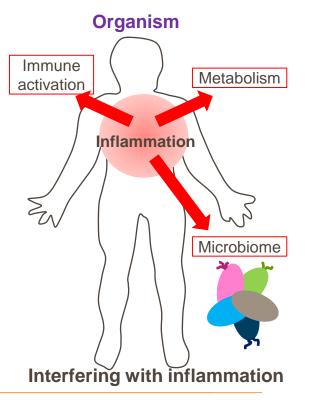

#### AS01 increases the number of innate cells bearing antigen but does not increase antigen uptake intrinsically



Didierlaurent et al. J. Immunol, 2014

#### Combination of MPL and QS-21 is critical for optimal gEspecific CD4<sup>+</sup> T cell response




Dendouga et al, Vaccine 2012; 30:3126-35

#### **Perspectives**

- Understanding the mode of action of adjuvanted vaccines in older adults and potential differences with younger individuals will help to:
  - Define key elements of innate response involved and whether some should be preferentially targeted (monocytes, NK?)
  - □ Ability of adjuvant to genuinely prime de novo response or restore/boost quality/fitness of pre-existing pool of antigen-specific T and B cells
  - Extend use of adjuvants to target other diseases in the elderly population (Strep, Nosocomial, RSV...)- Zoster-related specificities?
- "Elderly prone" Adjuvants with specific features, targeting of specific innate cells? Need for new adjuvants?
- Combination with other vaccine delivery or other approaches (mTor)?

#### Vaccine responsiveness and adjuvants....

- BOTH properties antigen-specific memory response AND <u>inflammatory status</u> may condition vaccine responsiveness, in particular to adjuvanted vaccines
- Adjuvant are likely dependent on "innate responsiveness/fitness" in the elderly considering their known mode of action



Some level of inflammation may be needed to overcome hypo-responsiveness (not enough with alum-based vaccine, achieved with AS01)

<u>Or</u>

Baseline dysregulated pathways (inflammaging) should be modulated to alleviate hyporesponsiveness

From Alter and Sekaly, Vaccine 2015; 33supp2: B55-9

<u>AS01 MOA work</u> Margherita Coccia Catherine Collignon

Giuseppe Del Giudice Tom Heinemann Robbert Van der Most Lidia Oostvogels Bruce Innis Alberta Di Pasquale