

22 June 2018 – Les Pensières Center for Global Health

Overview of *Aedes aegypti* biology and interactions with dengue and Zika viruses

Louis Lambrechts

Insect-Virus Interactions, Institut Pasteur-CNRS UMR 2000, Paris, France

Worldwide distribution of Aedes aegypti

$$R_0 = \frac{ma^2p^nb}{-\ln(p)} \frac{c}{r}$$

$$R_0 = \frac{ma^2p^nb}{-\ln(p)} \frac{c}{r}$$
 $c = \text{human host competence}$
 $r = \text{daily recovery rate}$
 $HUMAN$ of infected humans

Aedes aegypti abundance and DENV infection risk

■ Cross-sectional ■ Longitudinal

Household-level indicators of Ae. aegypti abundance are associated with DENV seroconversion when they are calculated from longitudinal entomological data

Impact of mosquito blood feeding behavior on vector-borne pathogen transmission

Most adult female anautogenous mosquitoes

- One vertebrate blood meal per egg-laying cycle
- Consumption of plant carbohydrates

Aedes aegypti

- >90% blood meals taken on humans
- Multiple blood feeding
- 0.63 to 0.76 blood meals per day
- No sugar feeding when human blood available

Talk outline

Genetic determinants of vector-virus interactions

- G x G interactions
- Ae. aegypti vs. Ae. albopictus

Non-genetic determinants of vector-virus interactions

- Temperature
- Larval microbiota
- Vertebrate host factors

Talk outline

Genetic determinants of vector-virus interactions

- G x G interactions
- Ae. aegypti vs. Ae. albopictus

Non-genetic determinants of vector-virus interactions

- Temperature
- Larval microbiota
- Vertebrate host factors

Vector competence

Intrinsic ability to become infected and subsequently transmit a pathogen

Genotype-by-genotype (G x G) interactions

DENV-1 isolates

Ratchaburi, Thailand

Lambrechts et al. BMC Evol Biol 2009; Lambrechts Trends Parasitol 2011

Genetic mapping of G x G interactions between *Ae. aegypti* and DENV

Worldwide survey of *Ae. aegypti* susceptibility to diverse strains of ZIKV

8 field-derived Ae. aegypti colonies

6 low-passage ZIKV strains:

ZikaPLAN

Sample_size

• 5

• 10

15

20

Population

Thailand

African Ae. aegypti are less susceptible to ZIKV

ZIKV strain

Talk outline

Genetic determinants of vector-virus interactions

- G x G interactions
- Ae. aegypti vs. Ae. albopictus

Non-genetic determinants of vector-virus interactions

- Temperature
- Larval microbiota
- Vertebrate host factors

Aedes aegypti vs. Aedes albopictus

Secondary DENV/ZIKV vector: *Aedes albopictus*

Primary DENV/ZIKV vector: *Aedes aegypti*

Feeding behavior of Ae. aegypti vs. Ae. albopictus

Aedes albopictus

- Day biting
- Opportunistic

Aedes aegypti aegypti

- Day biting
- Anthropophilic

However, multiple examples of Ae. albopictus preference for humans:

- North Carolina (Richards et al. J Med Entomol 2006)
- La Réunion Island (Delatte et al. Vector Borne Zoonotic Dis 2010)
- Southern Thailand (Ponlawat & Harrington J Med Entomol 2005)

DENV competence of Ae. aegypti vs. Ae. albopictus

Meta-analysis of 91 separate experiments from 14 studies (1971-2009)

- Ae. albopictus 16% more susceptible to midgut infection
- Dissemination 26% less likely than in Ae. aegypti

ZIKV competence of Ae. aegypti vs. Ae. albopictus

Ae. albopictus is more susceptible but less competent than Ae. aegypti

- Data shown for 2016 ZIKV strain from Honduras
- Similar results for 2010 ZIKV strain from Cambodia

Talk outline

Genetic determinants of vector-virus interactions

- G x G interactions
- Ae. aegypti vs. Ae. albopictus

Non-genetic determinants of vector-virus interactions

- Temperature
- Larval microbiota
- Vertebrate host factors

Influence of ambient temperature on DENV extrinsic incubation period in *Ae. aegypti*

Talk outline

Genetic determinants of vector-virus interactions

- G x G interactions
- Ae. aegypti vs. Ae. albopictus

Non-genetic determinants of vector-virus interactions

- Temperature
- Larval microbiota
- Vertebrate host factors

The mosquito 'holobiont'

Carry-over effects of larval microbiota

Mosquito life cycle

Carry-over effects of larval microbiota

Mosquito life cycle

Gnotobiotic mosquitoes

Water sampling from natural breeding sites in Gabon

Exposure to different bacteria during larval development affects adult DENV vector competence

Non-axenic = control

Rsp_ivi = *Rhizobium* isolate

Esp ivi = Enterobacteriaceae isolate

Ssp_ivi = Salmonella isolate

Talk outline

Genetic determinants of vector-virus interactions

- G x G interactions
- Ae. aegypti vs. Ae. albopictus

Non-genetic determinants of vector-virus interactions

- Temperature
- Larval microbiota
- Vertebrate host factors

NS1 facilitates ZIKV infection of Aedes aegypti

Predictors of successful human-to-mosquito DENV transmission in Cambodia

DENV dose response by disease category

Take home

- Aedes aegypti is a major arbovirus vector owing to its widespread distribution, human biting behavior and vector competence
- Vector competence is governed by specific G x G interactions between mosquito and arbovirus strains
- Arbovirus transmission by mosquitoes is modulated by manifold biotic and abiotic factors of the environment
- Understanding variation in vector-virus interactions provides insights into arbovirus epidemiology and supports development of innovative strategies to interrupt arbovirus transmission

Acknowledgements

IP Paris

Albin Fontaine

Fabien Aubry

Laura Dickson

Isabelle Conclois

Sarah Merkling

Daria Martynow

Artem Baidaliuk

Anavaj Sakuntabhai

Ricchard Paul

Stevenn Volant

Amine Ghozlane

Christiane Bouchier

Laurence Ma

Valérie Caro

Laure Diancourt

UC Davis

Tom Scott

IRD / CIRMF Gabon

Christophe Paupy

Diego Ayala

Davy Jiolle

CNRS Lyon

Claire Valiente Moro

Guillaume Minard

Louis Malardé Tahiti

Mai Cao-Lormeau

AFRIMS Bangkok

Thanyalak Fansiri

Alongkot Ponlawat

Jason Richardson

Rick Jarman

IP Cambodia

Philippe Buchy

Veasna Duong

IP Dakar

Amadou Sall

Cheikh Diagne

IP Cayenne

Isabelle Dusfour

<u>IP Guadeloupe</u>

Anubis Vega-Rua

UniNorte Colombia

Claudia Romero-Vivas

CVR Glasgow

Alain Kohl

UVR Entebbe

Julius Lutwama

Thank you for your attention

http://research.pasteur.fr/en/team/insect-virus-interactions

<u>louis.lambrechts@pasteur.fr</u>

Aedes aegypti subspecies

Blue = subspecies *Ae. aegypti formosus* Red = subspecies *Ae. aegypti aegypti*

ZIKV strains

Asian lineage

African lineage

Distribution of Aedes aegypti and Aedes albopictus

ZIKV competence of Ae. aegypti vs. Ae. albopictus

Ae. albopictus is more susceptible but less competent than Ae. aegypti

