

Measuring the consumption of antimicrobials and COVID-19 impact?

28 May 2021, AMR in times of Covid19 Webinar

Arno Muller Team lead Surveillance of antimicrobial use Antimicrobial Resistance Division WHO

Introduction

2

Antimicrobial Resistance: a Public Health issue

Antibiotic deployment

Antibiotic resistance observed

Clatworthyet al. Nature Chemical Biology 2007;3:541-48

- Micro perspective
 - Patient Increased morbidity
 - non-functioning protheses
 - amputations
 - Increased mortality
 - Neonatal infections ICU 9x in LMIC
 - Payer and healthcare provider
 - Longer hospitals stay
 - Longer & expensive treatment (medicines and utilities)
- Macro perspective
 - Health services
 - Procedures are performed less frequently (surgery, cancer...)
 - Socio-economic impact
 - Lost productivity and GDP
 - Health expenditures increased (out of pocket)

Laxminarayan. Lancet ID, 2013. Blomberg. BMC infect dis, 2007; O`Neill report, Review on antimicrobial resistance.

Factors contributing to Antimicrobial Resistance (AMR)

Holmes at al., 2016

- **Objective 2:** Strengthen the knowledge and evidence base through surveillance research (AMR and AMU)
- **Objective 4:** Optimize the use of antimicrobial medicines
- Aim: Ensure continuity of successful treatment & prevention of infectious diseases with effective, safe, quality-assured medicines that are used in a responsible way & accessible to all who need them
- Call for all countries to collect & report data on antimicrobial use

Oie

FOR ANIMAL HEALTH

Food and Agriculture Organization of the

Measuring the use of antimicrobials

Data on Antimicrobial Use – What can it tell us?

- Understand volume and pattern of antimicrobial consumption
- Assess prescribing practices and appropriateness of use
- Compare across local, national and international level
- Detect trends over time
- Benchmarking

WHO strategy for surveillance of use of antimicrobials

World Health Organization

Two-pronged approach for measuring the use of antimicrobials in countries

Antimicrobial consumption

Routine surveillance

Target: Manufacturers/Importers/Distributors/Health Facilities

To estimate which antimicrobials are used and how much

Census data

Metrics: Defined Daily Dose

National ⇒ Facility

Antimicrobial use

Surveys

World Health Organization

Target: patients, prescribers, dispensers

To understand how antimicrobials are used

Sample data

Metrics: Proportion of patients

Value chain of medicines and antimicrobial consumption

Monitoring antimicrobial consumption

National surveillance

- Provide estimates on types and quantities used at country level
- Targets: national policies, regulations, rational use, supply

Data providers

Facility surveillance

- Provide estimates on types and quantities used at facility level
- Targets: national/facility policies, supply, stewardship

Data providers

Methodology for surveillance of antimicrobial consumption

- All antimicrobial classes (antibacterials, antifungals, antivirals, malaria, tuberculosis)
- Using the ATC/DDD system (www.whocc.no)
- At country level
 - Annual data for public and private sectors, for community and hospital healthcare levels
 - Data sources: import, manufacturing, wholesales, distributors, health facilities, health insurance
- At facility level
 - Minimum annual data (quarterly, monthly) for the whole facility, by departments, wards
 - Data sources: hospital pharmacy: procurement, dispensing, e-prescribing systems
- Consumption data
 - List of all authorized antimicrobial medicines including detailed information (ATC code, route, strength, package size) \Rightarrow content of substance per product
 - Number of packages « consumed » for all authorized antimicrobial medicines
 - Metrics: Defined Daily Dose

WHO methodologies to measure antimicrobial consumption and use

https://apps.who.int/iris/b itstream/handle/10665/33 6215/9789240012639eng.pdf

https://apps.who.int/iris/b itstream/handle/10665/33 6182/9789240000421eng.pdf

https://apps.who.int/iris/b itstream/handle/10665/33 6182/9789240000421eng.pdf

CONSUMPTION

GLASS

National data

(A) World Health Organization

WHO Methodology for Point Prevalence Survey on Antibiotic Use in Hospitals Version 1.1

https://www.who.int/m edicines/access/antimi crobial resistance/WH **O-EMP-IAU-**2018_01/en/

https://www.who.int/medi cines/areas/rational use/ oms-amr-amc-report-2016-2018/en/

WHO Report

WHO Methodologies

WHO GLASS

ROUTINE DATA SURVEILLANCE	FOCUSSED SURVEILLANCE	SURVEYS AND STUDIES		
Antimicrobial Resistance	Emerging Antimicrobial Resistance Reporting	Enhanced Gonorrhoeae surveillance (GLASS-EGASP)		
surveillance (GLASS-AMR)	(GLASS-EAR)	One Health AMR surveillance (GLASS-One Health)		
Antimicrobial Consumption surveillance (GLASS-AMC)	<i>Candida</i> spp.	Point Prevalence Survey methodology for AMU in hospital		
	AMR surveillance (GLASS-Fungi)	GLASS methodology for estimating attributable mortality of AMR bloodstream infections		

First data call on antimicrobial consumption in June 2021

٠

- Roll out of the surveillance of antimicrobial consumption in hospitals
 - Point prevalence surveys on antibiotic use in hospitals carried out in Africa, South America and Middle East

Impact of COVID-19 on antibiotic consumption

In hospitals

15

Increase in antibiotic consumption

Year	Narrow ß-lactams	Broad Community ^a	Broad Hospital ^a	Anti-MDRO ^a	Anti-MRSAª	All Other	Total		
	DOT per 1,000 days present, all eligible facilities								
2015	82	141	155	2.0	122	137	638		
2016	84	136	152	1.5	117	136	627		
2017	87	130	150	1.7	113	135	617		
2018	92	127	146	1.8	107	136	609		
2019	93	120	145	1.7	101	141	602		
Change/year	2.9	-5.2	-2.4	-0.1	-5.1	0.9	-9.1		
2020	89	129	152	1.7	103	153	628		
2020 vs 2019	-4.5	9.1	7.5	0.1	1.6	12.2	25.9		

Data from 84 US VA hospitals (Jan-May) Dieringer et al, ICHE 2020 Table 1

Main characteristic of patients hospitalized for COVID-19 for \geq 48 hours

Characteristic	No infection $(n = 917)$	Community-acquired co-infection $(n = 31)$		Hospital-acquired superinfection ($n = 43$)	
		Value	p ^a	Value	p ^b
Treatment at onset					
Lopinavir/ritonavir	732 (79.8)	27 (87.1)	0.227	35 (81.4)	0.802
Hydroxychloroquine	799 (87.1)	29 (93.5)	0.225	40 (93)	0.186
Azithromycin	751 (81.9)	26 (83.9)	0.779	36 (83.7)	0.761
Remdesivir	39 (4.3)	0(0)	0.226	2 (4.7)	0.559
Ceftriaxone	528 (57.6)	24 (77.4)	0.028	32 (74.4)	0.029
Ceftaroline	26 (2.8)	2 (6.5)	0.232	5 (11.6)	0.001

Data from 889 patients from Barcelona hospitals (Feb-Apr 2020) Garcia-Vidal et al, Clin Microbiol Infect 2020

- High prevalence of antibiotic use among COVID-19 patients
- High density of use in the hospitals

However,

		Antibiotic DOT						
Year	Days Present	Narrow ß-lactams	Broad Community	Broad Hospital	Anti-MDRO	Anti-MRSA	All Other	Total
2015	1,291	106	182	200	2.6	157	177	824
2016	1,265	106	173	192	1.9	148	172	793
2017	1,242	109	161	187	2.1	140	167	766
2018	1,230	113	156	179	2.2	131	168	749
2019	1,199	112	144	174	2.0	121	169	722
Change per year	-23	1.5	-9.5	-6.5	-0.1	-9.0	-2.0	-26
2020	1024	91	132	156	1.8	105	171	643
2020 vs 2019	-174	-21	-12	-18	-0.2	-16	-12	-78

Note. MDRO, multidrug-resistant organism; MRSA, methicillin-resistant *Staphylococcus areus.* ^aDays are in thousands.

Data from 84 US VA hospitals (Jan-May) Dieringer et al, ICHE 2020

Data from an Italian hospital Giacomelli et al, Pharmacol Res 2021

- Biphasic behaviour in some hospitals (decrease after initial increase) ⇒ change in patient management
- Overall decrease of level of consumption in hospitals compared to previous year

In the primary care

Decrease of consumption

Figure 1. Community consumption of systemic antibiotics (J01) in Emilia-Romagna Region: comparison by month and year (period March-May 2018-2019 and 2020).

Data from primary care Italy Cagliotti et al, Infectious diseases 2021

ATC Level	Antimicrobial Class	National antibiotic use 2019	National antibiotic use 2020	
		Total DID	Total DID	Difference
J01AA	Tetracyclines	1.51	1.57	4%
	Penicillins with extended			
J01CA	spectrum	8.40	3.74	-56%
J01CR	Combinations of penicillins, incl. beta-lactamase inhibitors	4.84	4.85	0.1%
J01DB	First-generation cephalosporins	1.15	0.70	-39%
J01DC	Second-generation cephalosporins	2.65	2.55	-4%
J01DD	Third-generation cephalosporins	2.02	2.27	12%
J01DH	Carbapenems	0.04	0.06	43%
J01FA	Macrolides	3.24	4.81	49%
J01FF	Lincosamides	0.71	1.39	95%
J01MA	Fluoroquinolones	2.74	3.00	9%
	Total	28.39	26.82	-6%

Data from a Middle East country *WHO*

- Some countries show decrease of antibiotic consumption in the primary care
- Mainly on first line, cheap antibiotics

Impact of lock down in France

Age group 0-19

- Overall, 29% and 25% decrease in 2020 and 2021
- Bigger decrease among children (0-18y)
- Reason given:
 - isolation of people (including less utilization of the health services)
 - for children: no school, no day care centers
 - Lower circulation of infectious diseases among the population

Weill et al, EPI-PHARE (Groupement d'intérêt scientifique ANSM-Cnam), 27 mai 2021 https://www.epi-phare.fr/rapports-detudes-etpublications/covid-19-usage-des-medicaments-rapport-6

Impact of COVID-19 on antimicrobial use

- Direct impact
 - COVID-19 patient management
 - Increased use in COVID-19 hospitalized patients
 - Appropriate / Inappropriate use
- Indirect impact
 - Systemic impact of COVID-19 on society
 - Lower access to health services
 - Because of disruption
 - Epidemic aspects
 - Lower circulation of infectious diseases in the population due to lock down

5/28/2021

Conclusion

- Measuring the use of antimicrobials is very challenging
 - Levels of resources in countries
- Needs for multi-tool approach
- Routine surveillance of antimicrobial consumption allows to detect changes in pattern of use of antimicrobials
- COVID-19 impacted antimicrobial use differently in hospitals and in the community
- Needs longer datasets on use to have better understanding on the changes
- Needs additional work to understand long lasting effects on these changes on the development of antimicrobial resistance

Conclusion

